Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Regen ; 11(1): 21, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35650374

RESUMO

Mesenchymal stem cells (MSCs)-based therapy has displayed some promises in ischemia heart diseases although its efficacy may be affected by changes in surrounding environments. This study evaluated the role of autophagy insufficiency using Beclin1 haploinsufficiency (BECN+/-) on intra-myocardial MSC transplantation-evoked effect against myocardial infarction. Donor MSCs from C57BL/6 mice were labelled with cell-tracker CM Dil and were delivered into LV free wall adjacent to infarct region in wild-type (WT) and BECN+/- recipient mice following ligation of left main coronary artery (MI-MSCs). Ten days following MI, myocardial function was assessed using echocardiography. Cardiomyocyte contractility and intracellular Ca2+ were monitored using cardiomyocytes from the area-at-risk adjacent to infarct. CM-Dil labeled cells were tracked in MSCs recipient mice using fluorescence microscopy. Lectin, Masson trichrome staining and Western blot analysis were employed to determine cardiomyocyte area, scar fibrosis, apoptosis and inflammation. MI insult triggered scar fibrosis, LV chamber dilation, decreased fractional shortening, ejection fraction, cardiomyocyte shortening, maximal velocity of shortening and relengthening as well as prolonged relengthening, which were abrogated or attenuated by MSCs therapy in WT but not BECN+/- mice. MI decreased intracellular Ca2+ rise and decay in response to electrical stimuli without affecting resting intracellular Ca2+, which were reconciled by MSCs in WT but not BECN+/- mice. MSCs further attenuated MI-induced mitochondrial ultrastructural injury, apoptosis, inflammation and autophagy defects in peri-infarct area in WT but not BECN+/- mice. Collectively, our results suggested that autophagy insufficiency dampened in MSCs-elicited cardioprotection associated with dampened apoptosis and inflammation.

2.
Pharmacol Res ; 176: 106086, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35033649

RESUMO

Type 2 diabetes mellitus (T2D) contributes to sustained inflammation and myopathic changes in the heart although the precise interplay between the two remains largely unknown. This study evaluated the impact of deficiency in CD74, the cognate receptor for the regulatory cytokine macrophage migration inhibitory factor (MIF), in T2D-induced cardiac remodeling and functional responses, and cell death domains involved. WT and CD74-/- mice were fed a high fat diet (60% calorie from fat) for 8 weeks prior to injection of streptozotocin (STZ, 35 mg/kg, i.p., 3 consecutive days) and were maintained for another 8 weeks. KEGG analysis for differentially expressed genes (DEGs) reported gene ontology term related to ferroptosis in T2D mouse hearts. T2D patients displayed elevated plasma MIF levels. Murine T2D exerted overt global metabolic derangements, cardiac remodeling, contractile dysfunction, apoptosis, pyroptosis, ferroptosis and mitochondrial dysfunction, ablation of CD74 attenuated T2D-induced cardiac remodeling, contractile dysfunction, various forms of cell death and mitochondrial defects without affecting global metabolic defects. CD74 ablation rescued T2D-evoked NLRP3-Caspase1 activation and oxidative stress but not dampened autophagy. In vitro evidence depicted that high glucose/high fat (HGHF) compromised cardiomyocyte function and promoted lipid peroxidation, the effects were ablated by inhibitors of NLRP3, pyroptosis, and ferroptosis but not by the mitochondrial targeted antioxidant mitoQ. Recombinant MIF mimicked HGHF-induced lipid peroxidation, GSH depletion and ferroptosis, the effects of which were reversed by inhibitors of MIF, NLRP3 and pyroptosis. Taken together, these data suggest that CD74 ablation protects against T2D-induced cardiac remodeling and contractile dysfunction through NLRP3/pyroptosis-mediated regulation of ferroptosis.


Assuntos
Antígenos de Diferenciação de Linfócitos B/genética , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ferroptose , Antígenos de Histocompatibilidade Classe II/genética , Piroptose , Remodelação Ventricular , Adulto , Animais , Linhagem Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Expressão Gênica , Humanos , Fatores Inibidores da Migração de Macrófagos/sangue , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Contração Miocárdica , Miocárdio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Estresse Oxidativo , Consumo de Oxigênio , Ratos
3.
Bioresour Technol ; 107: 251-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22227142

RESUMO

To fully exploit the benefits of N-methylmorpholine-N-oxide (NMMO) in lignocelluloses bioconversion, a compatible system was established for efficient in situ saccharification of cellulose in NMMO-aqueous media in which the NMMO is able to activate and solubilize the cellulose, and the cellulases possess high stability and activity. Cellulase retained its original activity after being pre-incubated in 15% and 20% (w/v) NMMO solutions. After optimization of reaction parameters, high saccharification rate (96.5%) was obtained in aqueous-NMMO media by ultrasound assisted treatment of cellulose. The viscosity and FTIR analysis revealed that NMMO-treated cellulose under ultrasonic condition was porous and amorphous, which led to improved saccharification. The addition of trifle lignin in lower concentration improved the saccharification efficiency of sugarcane bagasse, while higher concentration interferes with hydrolysis. In conclusion, these findings provided great implications to develop a continuous process NMMO-cellulases system for transformation of native biomass.


Assuntos
Carboidratos/química , Celulase/química , Óxidos N-Cíclicos/química , Morfolinas/química , Saccharum/química , Ultrassom , Hidrólise , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...